Board on Army Science and Technology National Research Council Study Presented by James J. Valdes, Ph.D. Scientific Advisor for Biotechnology (ST) USA SBCCOM ECBC (410) 436-1396; DSN 584- Edgewood Chemical Biological Center #### STATEMENT OF TASK - Examine <u>developmental trends</u> in bio-science and engineering. Determine what the Army is doing to take advantage of the growth in biotechnology. Include, but <u>do not emphasize</u>, <u>medical applications</u>. - Determine whether biotechnology trends can be used to predict likely advances useful for the Army through the 2025 time frame. - Identify which bio-science and engineering <u>technologies</u> offer the most potential for Army applications. - Identify <u>critical barriers</u> that may exist for development, and suggest ways that they may be overcome. - Recommend <u>research</u> initiatives that may help to exploit promising biotechnologies through 2025. **Edgewood Chemical Biological Center** ## STUDY HIGHLIGHTS - Evaluated forty-five biotechnology areas with potential for Army applications - Identified five biotechnology areas as having "high" priority for Army investment in research - Identified four critical barriers to development amenable to Army research - Recommended ways to overcome other barriers to development that are not amenable to research - Provided three overarching recommendations to guide successful exploitation of future opportunities Edgewood Chemical Biological Center # WHAT IS A BIOTECHNOLOGY? Biologists and engineers on the committee agreed on the following definition of a *biotechnology:* 1) It uses organisms, or tissues, cells, or molecular components <u>derived from living things</u>, to act on living things and/or 2) It acts by intervening in the workings of cells or the molecular components of cells, including their genetic material. ## TRENDS IN BIOTECHNOLOGY - Biosensor capabilities - Genomics applications and "spinoffs" - Functional genomics and proteomics - "Discovery" approach to development Edgewood Chemical Biological Center # Why a Biological Approach? - 1. Characteristics of the biosphere are diversity, mutability and amplification. - 2. 3.5 billion years of evolution of sensors, camouflage and concealment in the biosphere. - 3. Ability of cells to produce particles and fibers to reproducible specifications not achievable by man. - 4. Molecular tools for controlling these processes now exist within DOD. **Edgewood Chemical Biological Center** #### **ENDURING ARMY APPLICATIONS** Camouflage and concealment Combat identification Computing Data fusion Functional foods Health monitoring High-capacity data storage High-resolution imaging Lightweight armor Novel materials Performance Enhancement Radiation-resistant electronics Reductions in size and weight Sensing battlefield environments Sensor networks Soldier therapeutics Soldier-portable power Target recognition Vaccine development Wound healing # CRITERIA FOR HIGH PRIORITY The committee recommended a "high" priority for research if a biotechnology met <u>all</u> of the following criteria: - Supports an application likely to fill a perceived void on future battlefields - Appears to offer the most promising avenue toward solving an Army problem - Is not likely to be developed by industry **Edgewood Chemical Biological Center** ## **FUTURE ARMY APPLICATIONS** Camouflage and concealment Biomaterials with stealth characteristics; nonilluminating paints and coatings. Combat identification Biological markers to distinguish friendly soldiers. Computing DNA computers to solve special problems; biologic models to suggest computer algorithms. Data fusion Associative memory and other protein-based devices; artificial intelligence. Functional foods Additives to improve nutrition, enhance digestion, improve storage characteristics, enable battlefield identification, reduce detectability; edible vaccines; fast-growing plants. Health monitoring Devices to provide feedback on soldier status, enable remote triage, augment network of external sensors to provide intelligence on chemical, biological, or environmental agents. High-capacity data storage Rugged computer memories for individual soldiers. High-resolution imaging High-resolution alternatives to semiconductor imagers. Lightweight armor Protection for soldiers and combat systems; systems with living characteris as self-repairing body armor. **Edgewood Chemical Biological Center** # **FUTURE ARMY APPLICATIONS Cont'd** Novel materials Biologically inspired materials; biodegradable consumables; genetically engineered proteins; renewable resources. Performance Enhancement Cortical implants; computer input and display interfaces; prostheses control; sensory enhancement; antidotal implants; gene-expression monitoring; performance-enhancing drugs. Radiation-resistant electronics Protein-based components; biomolecular hybrid devices; biomolecular diodes; bio-FETs (field effect transistors). Reductions in size and weight Cell-based processes; molecular electronics; biochips; nanotechnology. Sensing battlefield environments Laboratories-on-a-chip to detect and identify chemical, biological, and environmental threat molecules on the battlefield; coupling of diagnostic and therapeutic functions. Sensor networks Remote sensors mounted on vehicles and carried by soldiers to augment threat intelligence. Soldier therapeutics Drugs to counteract shock; genomics-based, directed therapies; optimized responsiveness to vaccines. Soldier-portable power Biological photovoltaics; cell-based energy systems. Target recognition Protein-based devices for pattern recognition; artificial intelligence. Vaccine development Reduced development and production times for small-scale requirements to respond to diseases encountered in exotic locales. Wound healing Engineered skin, tissue, and organs; wound dressings and treatments to curtail bleeding and accelerate healing. **Edgewood Chemical Biological Center** # "Applications of biomaterials include obscuration, camouflage and concealment" Opportunities in Biotechnology for Future Army Applications National Academy of Sciences (2001) Edgewood Chemical Biological Center # **Obscurant Protection** # PROGRAM COMPONENTS Obscurant Protection \$1K **Defeats** Smart Weapons Cost \$100K Advanced Screening Materials Obscurant Delivery and Dissemination Protection Evaluation and Simulation Smoke/Vehicle Cost Ratio 1/1000 Saves COST EFFECTIVE PROTECTION FROM BEING ACQUIRED, BEING HIT #### Combat Service Support Proposal Edgewood Chemical Biological Center **Obscurant/Sensor Overlay** .40 µm .75 µm 3 µm 6 µm 14 µm 1 mm 10 mm 100 mm Wavelengths of Military Millimeter **Visible** Near IR Mid IR Far IR **Microwave** Interest Wave Laser Laser **Day Sights** Radar Range Range **Finders Finders Naked Eye** Communication Laser Laser Links **Designators Designators** Sensor Cameras **Binoculars** Thermal Imagers **Thermal Homing Sensors Homing Sensors** Video Cameras Own the Night and the Day **Edgewood Chemical Biological Center** # **Particle Shape and Extinction** Extinction Cross Section/Mass Extinction Cross Section/Mass Extinction Cross Section/Mass #### **Current Obscurant Materials** Visible **Material: Titania spheres** **Problem: Difficult to produce monodisperse spheres** IR Material: Brass flakes, graphite flakes **Problems: Toxicity, persistence** **Millimeter Wave** Material: Iron coated fiberglass, carbon fibers Problems: Oxidation, breakage, toxicity, persistence **Multispectral** **Material: Iron whiskers** **Problems: Pyrophoric, toxicity, persistence** Edgewood Chemical Biological Center #### **Warfighter Payoff** Signature reduction across the electromagnetic spectrum results in Enhanced survivability Increased mobility Warfighter can train as he fights because biomaterials are Non-persistent Non-toxic Biodegradable Reduced costs and logistical support because biomaterials are Cheap to manufacture Easy to store and disperse Produced as uniform particles #### **OVERARCHING RECOMMENDATIONS** #### Recommendation The Army should adopt new approaches toward commercial developers to accommodate cultural differences between the government and the biotechnology industry. ## **OVERARCHING RECOMMENDATIONS** #### Recommendation To operate effectively in the multidisciplinary environment of future biosystem development, the Army will have to invest in education. In addition to its existing expertise in medical research and development, the Army will need a cadre of science and technology professionals capable of translating advances in the biosciences into engineering practice.